[スポンサーリンク]

一般的な話題

光化学と私たちの生活そして未来技術へ

[スポンサーリンク]

 

はじめに

光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収から始まり、蛍光やりん光などの輻射過程、熱を放出しながら基底状態に戻る無輻射失活、エネルギー移動、電子移動、様々な化学反応、様々な性質の制御(電荷、磁気的性質、構造など)の現象につながります。

生命科学における光化学

これらの光化学現象は、我々の生命活動に直結しています。まず、光エネルギーを化学エネルギーに変換する光合成を最初に挙げたいと思います。地球で最大規模の光化学反応と言われる光合成は、様々な化学反応から構成されていますが、アンテナクロロフィルの光吸収・光エネルギー移動から光誘起電子移動・電荷分離が、その初期過程となっています。その結果、CO2とH2Oから糖とO2が生成されることから、この光化学反応なくして、我々人間は生きていくことはできないと言えるでしょう。
次の例として、目において、光の明暗を感知するのはロドプシンを紹介します。人は視覚から多くの情報を得ていると言われていますが、これは、レチナールとオプシンタンパク質の複合体であるロドプシンにおいて、レチナールの光異性化反応がオプシンタンパク質の構造を変え、神経細胞へ信号が伝達されることに基づいています。
また、様々な生命活動を調べるために数多くの発光プローブが開発され、活用されています。さらに、光増感剤となる分子を癌細胞に取り込ませ、生体組織透過性が高い光(> 650 nm)を分子に照射(エネルギー移動により一重項酸素が生成)すると、癌細胞を攻撃することができます。これは、光線力学的療法(PDT: Photodynamic Therapy)と呼ばれ、切除しづらい組織における癌治療に実用化されています。
このように我々人間は、光化学反応を上手く利用して生命活動を行っていると言えるでしょう。

材料における光化学

色素分子の色は、例えばインクジェットプリンタなどの染料やペンキ塗料などの顔料に実用化されています。これは、色素分子の光吸収スペクトルと密接に関連していると言えるでしょう。蛍光・りん光などの発光は、例えば有機ELディスプレイに利用されています。
光誘起電子移動反応は、光エネルギーを電気エネルギーに変換する太陽電池、光エネルギーを化学エネルギーに変換する人工光合成において極めて重要です。また光触媒反応は、光エネルギーにより、高付加価値を有する化学物質を合成したりするだけでなく、エネルギー的に不安定な化学物質を合成してエネルギーを貯蓄するという考え方も適用されます。
また最近では、蒸気にさらす、擦る、回すなどの極めて弱いマクロな刺激に応答して、発光や光学特性などの「目に見える」性質が変化する新奇物質群「ソフトクリスタル」や、1つの光子で2つの励起状態をつくるシングレットフィッション、2つの光子のエネルギーを合わせて高い光エネルギーをつくるアップコンバージョンなどの新しい考え方も光化学から生まれてきています。

光化学は量子化学と実学の境界面

こういった光化学を用いた生命現象の理解、役に立つ材料・光反応の開発には、光吸収過程、蛍光・りん光の輻射過程、エネルギー移動、電子移動などの基本的な現象は、量子化学的に設計できる部分が多くあります。そのため光化学は、量子化学と実学の境界面であると言え、今後の科学技術の発展には不可欠な学問と言えます。これら光化学現象の基礎的理解は非常に重要ですが、やや専門的な知識が必要とされます。また、光化学現象の定量的評価にも専門的な知識・技術が求められることから、これらは、独学では難しい部分も含まれるかも知れません。
光化学協会では、以下の講座を開催しています。

  • 光化学基礎講座:光化学を初めて学ぶ学生・光化学に関する業務に初めて携わる社会人などを対象
  • 光化学応用講座:光化学研究を行う学生や社会人を対象
  • 賛助会員共同セミナー:光化学関連機器紹介、測定の基礎原理や研究例などを解説

先述した光化学に対する需要を踏まえ、今年から、より多くの方にオンラインで受講していただけるようにしました(詳しくはHPをご覧ください:)。これより、光化学領域の基盤研究・応用技術の進展に貢献したいと考えております。

光化学について学びたい方はこちら!

本記事は石井和之(東大生研)・長谷川靖哉(北大院工)・長谷川美貴(青山学院大理工)先生による寄稿記事です。

関連書籍

光化学 (1) (基礎化学コース)

光化学 (1) (基礎化学コース)

井上 晴夫
¥3,520(as of 01/15 09:34)
Amazon product information
金属錯体の光化学 (錯体化学会選書 2)

金属錯体の光化学 (錯体化学会選書 2)

佐々木 陽一, 石谷 治, 石井 和之, 石田 斉, 大越 慎一, 加藤 昌子, 小池 和英, 杉原 秀樹, 民秋 均, 野崎 浩一
Amazon product information
Avatar photo

ケムステPR

投稿者の記事一覧

ケムステのPRアカウントです。募集記事や記事体広告関連の記事を投稿します。

関連記事

  1. 有機合成化学協会誌10月号:不飽和脂肪酸代謝産物・フタロシアニン…
  2. 「銅触媒を用いた不斉ヒドロアミノ化反応の開発」-MIT Buch…
  3. 二量化の壁を超えろ!β-アミノアルコール合成
  4. ラジカルの安定性を越えろ! ジルコノセン/可視光レドックス触媒を…
  5. MOFを用いることでポリアセンの合成に成功!
  6. 分子研オープンキャンパス2023(大学院説明会・体験入学説明会)…
  7. 小さなケイ素酸化物を得る方法
  8. プレプリントサーバー:ジャーナルごとの対応差にご注意を【更新版】…

注目情報

ピックアップ記事

  1. ボツリヌストキシン (botulinum toxin)
  2. トシルヒドラゾンを経由するカルボニル化合物の脱酸素ヒドロフッ素化反応によるフルオロアルカンの合成
  3. ポルフィリン中心金属の違いが薄膜構造を変える~配位結合を利用した新たな分子配向制御法の開発~
  4. ルイスペア形成を利用した電気化学発光の増強
  5. ビタミンB1塩酸塩を触媒とするぎ酸アミド誘導体の合成
  6. リーベン ハロホルム反応 Lieben Haloform Reaction
  7. 『リンダウ・ノーベル賞受賞者会議』を知っていますか?
  8. 多置換ケトンエノラートを立体選択的につくる
  9. ナノってなんて素敵ナノ
  10. 光と励起子が混ざった準粒子 ”励起子ポラリトン”

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP